

 Navigation

 	
 index

 	
 next |

 	Pygame Zero 1.1 documentation

Welcome to Pygame Zero

Pygame Zero is for creating games without boilerplate.

It is intended for use in education, so that teachers can teach basic
programming without needing to explain the Pygame API or write an event loop.

Courses

	Introduction to Pygame Zero
	Creating a window

	Drawing a background

	Draw a sprite

	Moving the alien

	Handling clicks

	Sounds and images

	Clock

	Summary

Reference

	Installing Pygame Zero
	On Windows

	On OSX

	On Ubuntu Linux

	On Debian 8 (Jessie)

	On Raspberry Pi

	Event Hooks
	Game Loop Hooks

	Event Handling Hooks

	Built-in Objects
	Screen

	Rect

	Resource Loading

	Music

	Clock

	Actors

	The Keyboard

	Animations

	Contributing to Pygame Zero
	Development installation

	Tests

	Changelog
	1.1 - pending

	1.0.2 - 2015-06-04

	1.0.1 - 2015-05-31

	1.0 - 2015-05-29

	1.0beta1 - 2015-05-19

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Daniel Pope.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pygame Zero 1.1 documentation

Introduction to Pygame Zero

Creating a window

First, create an empty file called intro.py.

Verify that this runs and creates a blank window by running

pgzrun intro.py

Everything in Pygame Zero is optional; a blank file is a valid Pygame Zero
script!

You can quit the game by clicking on the window’s close button or by pressing
Ctrl-Q (⌘-Q on Mac). If the game stops responding for any reason, you
may need to terminate it by pressing Ctrl-C in your Terminal window.

Drawing a background

Next, let’s add a draw() function. Pygame Zero will call this function
whenever it needs to paint the screen.

In intro.py, add the following:

	1
2
3
4
5

	WIDTH = 300
HEIGHT = 300

def draw():
 screen.fill((128, 0, 0))

Re-run pgzrun intro.py and the screen should now be a reddish square!

What is this code doing?

WIDTH and HEIGHT control the width and height of your window. The code
sets the window size to be 300 pixels in each dimension.

screen is a built-in that represents the window display. It has a
range of methods for drawing sprites and shapes. The
screen.fill() method call is filling the screen with a solid colour,
specified as a (red, green, blue) colour tuple. (128, 0, 0) will be a
medium-dark red.

Pygame Zero is actually calling your draw function many times a second. If your
draw() function draws slightly different things every frame, it will appear
as an animation. We’ll explore this shortly. For now, let’s set up a sprite
that we can animate.

Draw a sprite

Before we can draw anything, we’ll need to save an alien sprite to use. You can
right click on this one and save it (“Save Image As...” or similar).

[image: _images/alien.png]
(This sprite has a transparency (or “alpha”) channel, which is great for games!
But it’s designed for a dark background, so you may not be able to see the
alien’s space helmet until it is shown in the game).

You need to save the file in the right place so that Pygame Zero can find it.
Create a directory called images and save the image into it as
alien.png. Both of those must be lower case. Pygame Zero will complain
otherwise, to alert you to a potential cross-platform compatibility pitfall.

If you’ve done that, your project should look like this:

.
├── images/
│ └── alien.png
└── intro.py

images/ is the standard directory that Pygame Zero will look in to find
your images.

There’s a built-in class called Actor that you can use to represent a
graphic to be drawn to the screen.

Let’s define one now. Change the intro.py file to read:

	1
2
3
4
5
6
7
8
9

	alien = Actor('alien')
alien.pos = 100, 56

WIDTH = 500
HEIGHT = alien.height + 20

def draw():
 screen.clear()
 alien.draw()

Your alien should now be appearing on screen! By passing the string 'alien'
to the Actor class, it automatically loads the sprite, and has attributes
like positioning and dimensions. This allows us to set the HEIGHT of
the window based on the height of the alien.

The alien.draw() method draws the sprite to the screen at its current
position.

Moving the alien

Let’s set the alien off-screen; change the alien.pos line to read:

alien.topright = 0, 10

Note how you can assign to topright to move the alien actor by its
top-right corner. If the right-hand edge of the alien is at 0, the the
alien is just offscreen to the left. Now let’s make it move. Add the following
code to the bottom of the file:

def update():
 alien.left += 2
 if alien.left > WIDTH:
 alien.right = 0

Pygame Zero will call your update() function once every frame. Moving the
alien a small number of pixels every frame will cause it to slide across the
screen. Once it slides off the right-hand side of the screen, we reset it back
to the left.

Handling clicks

Let’s make the game do something when you click on the alien. To do this we
need to define a function called on_mouse_down(). Add this to the source
code:

	1
2
3
4
5

	def on_mouse_down(pos):
 if alien.collidepoint(pos):
 print("Eek!")
 else:
 print("You missed me!")

You should run the game and try clicking on and off the alien.

Pygame Zero is smart about how it calls your functions. If you don’t define
your function to take a pos parameter, Pygame Zero will call it without
a position. There’s also a button parameter for on_mouse_down. So we
could have written:

def on_mouse_down():
 print("You clicked!")

or:

def on_mouse_down(pos, button):
 if button == mouse.LEFT and alien.collidepoint(pos):
 print("Eek!")

Sounds and images

Now let’s make the alien appear hurt. Save these files:

	alien_hurt.png - save this as alien_hurt.png
in the images directory.

	eep.wav - create a directory called sounds and save
this as eep.wav in that directory.

Your project should now look like this:

	1
2
3
4
5
6

	.
├── images/
│ └── alien.png
├── sounds/
│ └── eep.wav
└── intro.py

sounds/ is the standard directory that Pygame Zero will look in to find
your sound files.

Now let’s change the on_mouse_down function to use these new resources:

def on_mouse_down(pos):
 if alien.collidepoint(pos):
 sounds.eep.play()
 alien.image = 'alien_hurt'

Now when you click on the alien, you should hear a sound, and the sprite will
change to an unhappy alien.

There’s a bug in this game though; the alien doesn’t ever change back to a
happy alien (but the sound will play on each click). Let’s fix this next.

Clock

If you’re familiar with Python outside of games programming, you might know the
time.sleep() method that inserts a delay. You might be tempted to write
code like this:

	1
2
3
4
5
6

	def on_mouse_down(pos):
 if alien.collidepoint(pos):
 sounds.eep.play()
 alien.image = 'alien_hurt'
 time.sleep(1)
 alien.image = 'alien'

Unfortunately, this is not at all suitable for use in a game. time.sleep()
blocks all activity; we want the game to go on running and animating. In fact
we need to return from on_mouse_down, and let the game work out when to
reset the alien as part of its normal processing, all the while running your
draw() and update() methods.

This is not difficult with Pygame Zero, because it has a built-in
Clock that can schedule functions to be called later.

First, let’s “refactor” (ie. re-organise the code). We can create functions to
set the alien as hurt and also to change it back to normal:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	def on_mouse_down(pos):
 if alien.collidepoint(pos):
 set_alien_hurt()

def set_alien_hurt():
 alien.image = 'alien_hurt'
 sounds.eep.play()

def set_alien_normal():
 alien.image = 'alien'

This is not going to do anything different yet. set_alien_normal() won’t be
called. But let’s change set_alien_hurt() to use the clock, so that the
set_alien_normal() will be called a little while after.

def set_alien_hurt():
 alien.image = 'alien_hurt'
 sounds.eep.play()
 clock.schedule_unique(set_alien_normal, 1.0)

clock.schedule_unique() will cause set_alien_normal() to be called
after 1.0 second. schedule_unique() also prevents the same function
being scheduled more than once, such as if you click very rapidly.

Try it, and you’ll see the alien revert to normal after 1 second. Try clicking
rapidly and verify that the alien doesn’t revert until 1 second after the last
click.

Summary

We’ve seen how to load and draw sprites, play sounds, handle input events, and
use the built-in clock.

You might like to expand the game to keep score, or make the alien move more
erratically.

There are lots more features built in to make Pygame Zero easy to use. Check
out the built in objects to learn how to use the rest of the
API.

 Copyright 2015, Daniel Pope.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pygame Zero 1.1 documentation

Installing Pygame Zero

On Windows

	Install Pygame for Python 3. This is available as a .msi installer from the
Pygame Bitbucket [https://bitbucket.org/pygame/pygame/downloads].

	Install Pygame Zero with pip:

pip install pgzero

On OSX

homebrew [http://brew.sh/] is a package manager for OSX. It will allow you to install nearly
everything you need to get Pygame Zero up and running.

All commands will be entered in a Terminal window.

	Install homebrew [http://brew.sh/]:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

	Install Python 3:

brew install python3

	Install the following dependencies, needed for compiling Pygame:

brew install sdl sdl_image sdl_mixer sdl_sound sdl_ttf

	Now pygame can be installed easily using Python’s own package manager,
pip3:

pip3 install hg+http://bitbucket.org/pygame/pygame

	Finally, install Pygame Zero!

pip3 install pgzero

On Ubuntu Linux

There is a .deb package of Pygame for Python 3 available in this PPA [https://launchpad.net/~thopiekar/+archive/ubuntu/pygame].

	Add the PPA to your system sources:

sudo add-apt-repository ppa:thopiekar/pygame

	Update the package list:

sudo apt-get update

	Install the package:

sudo apt-get install python3-pygame

	Install Pygame Zero with pip:

pip3 install pgzero

On Debian 8 (Jessie)

(There is a .deb package of Pygame for Python 3 in Debian unstable “Sid”. On
Jessie it’s relatively simply to compile Pygame yourself.)

	Install the dependencies:

sudo apt-get install mercurial python3-dev python3-numpy libav-tools \
 libsdl-image1.2-dev libsdl-mixer1.2-dev libsdl-ttf2.0-dev libsmpeg-dev \
 libsdl1.2-dev libportmidi-dev libswscale-dev libavformat-dev \
 libavcodec-dev build-essential

	Grab Pygame source:

hg clone https://bitbucket.org/pygame/pygame

	Build Pygame:

cd pygame
python3 setup.py build

	Install Pygame:

sudo python3 setup.py install

	Install Pygame Zero with pip:

pip3 install pgzero

On Raspberry Pi

pgzero is likely to make an appearance in the Raspbian repo before long;
until then...

(Starting from a vanilla noobs-install Raspbian)

	sudo apt-get update

	sudo apt-get install python3-setuptools python3-pip

	sudo pip-3.2 install pgzero

 Copyright 2015, Daniel Pope.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pygame Zero 1.1 documentation

Event Hooks

Pygame Zero will automatically pick up and call event hooks that you define.
This approach saves you from having to implement the event loop machinery
yourself.

Game Loop Hooks

A typical game loop looks a bit like this:

while game_has_not_ended():
 process_input()
 update()
 draw()

Input processing is a bit more complicated, but Pygame Zero allows you to
easily define the update() and draw() functions within your game
module.

	
draw()

	Called by Pygame Zero when it needs to redraw your game window.

draw() must take no arguments.

Pygame Zero attempts to work out when the game screen needs to be redrawn
to avoid redrawing if nothing has changed. On each step of the game loop
it will draw the screen in the following situations:

	If you have defined an update() function (see below).

	If a clock event fires.

	If an input event has been triggered.

One way this can catch you out is if you attempt to modify or animate
something within the draw function. For example, this code is wrong: the
alien is not guaranteed to continue moving across the screen:

def draw():
 alien.left += 1
 alien.draw()

The correct code uses update() to modify or animate things and draw
simply to paint the screen:

def draw():
 alien.draw()

def update():
 alien.left += 1

	
update() or update(dt)

	Called by Pygame Zero to step your game logic. This will be called
repeatedly, 60 times a second.

There are two different approaches to writing an update function.

In simple games you can assume a small time step (a fraction of a second)
has elapsed between each call to update(). Perhaps you don’t even care
how big that time step is: you can just move objects by a fixed number of
pixels per frame (or accelerate them by a fixed constant, etc.)

A more advanced approach is to base your movement and physics calculations
on the actual amount of time that has elapsed between calls. This can give
smoother animation, but the calculations involved can be harder and you
must take more care to avoid unpredictable behaviour when the time steps
grow larger.

To use a time-based approach, you can change the update function to take a
single parameter. If your update function takes an argument, Pygame Zero
will pass it the elapsed time in seconds. You can use this to scale your
movement calculations.

Event Handling Hooks

Similar to the game loop hooks, your Pygame Zero program can respond to input
events by defining functions with specific names.

Somewhat like in the case of update(), Pygame Zero will inspect your
event handler functions to determine how to call them. So you don’t need to
make your handler functions take arguments. For example, Pygame Zero will
be happy to call any of these variations of an on_mouse_down function:

def on_mouse_down():
 print("Mouse button clicked")

def on_mouse_down(pos):
 print("Mouse button clicked at", pos)

def on_mouse_down(button):
 print("Mouse button", button, "clicked")

def on_mouse_down(pos, button):
 print("Mouse button", button, "clicked at", pos)

It does this by looking at the names of the parameters, so they must be spelled
exactly as above. Each event hook has a different set of parameters that you
can use, as described below.

	
on_mouse_down([pos][, button])

	Called when a mouse button is depressed.

	Parameters:	
	pos – A tuple (x, y) that gives the location of the mouse pointer
when the button was pressed.

	button – An integer indicating the button that was pressed (see
below).

	
on_mouse_up([pos][, button])

	Called when a mouse button is released.

	Parameters:	
	pos – A tuple (x, y) that gives the location of the mouse pointer
when the button was released.

	button – An integer indicating the button that was released (see
below).

	
on_mouse_move([pos][, rel][, buttons])

	Called when the mouse is moved.

	Parameters:	
	pos – A tuple (x, y) that gives the location that the mouse pointer
moved to.

	rel – A tuple (delta_x, delta_y) that represent the change in the
mouse pointer’s position.

	buttons – The buttons that were depressed, if any.

	
on_key_down([key][, mod][, unicode])

	Called when a key is depressed.

	Parameters:	
	key – An integer indicating the key that was pressed (see
below).

	unicode – Where relevant, the character that was typed. Not all keys
will result in printable characters - many may be control
characters. In the event that a key doesn’t correspond to
a Unicode character, this will be the empty string.

	mod – A bitmask of modifier keys that were depressed.

	
on_key_up([key][, mod])

	Called when a key is released.

	Parameters:	
	key – An integer indicating the key that was released (see
below).

	mod – A bitmask of modifier keys that were depressed.

	
on_music_end()

	Called when a music track finishes.

Note that this will not be called if the track is configured to loop.

Buttons and Keys

Built-in objects mouse and keys can be used to determine which buttons
or keys were pressed in the above events.

Note that mouse scrollwheel events appear as button presses with the below
WHEEL_UP/WHEEL_DOWN button constants.

	
class mouse

	A built-in enumeration of buttons that can be received by the
on_mouse_* handlers.

	
LEFT

	

	
MIDDLE

	

	
RIGHT

	

	
WHEEL_UP

	

	
WHEEL_DOWN

	

	
class keys

	A built-in enumeration of keys that can be received by the on_key_*
handlers.

	
BACKSPACE

	

	
TAB

	

	
CLEAR

	

	
RETURN

	

	
PAUSE

	

	
ESCAPE

	

	
SPACE

	

	
EXCLAIM

	

	
QUOTEDBL

	

	
HASH

	

	
DOLLAR

	

	
AMPERSAND

	

	
QUOTE

	

	
LEFTPAREN

	

	
RIGHTPAREN

	

	
ASTERISK

	

	
PLUS

	

	
COMMA

	

	
MINUS

	

	
PERIOD

	

	
SLASH

	

	
K_0

	

	
K_1

	

	
K_2

	

	
K_3

	

	
K_4

	

	
K_5

	

	
K_6

	

	
K_7

	

	
K_8

	

	
K_9

	

	
COLON

	

	
SEMICOLON

	

	
LESS

	

	
EQUALS

	

	
GREATER

	

	
QUESTION

	

	
AT

	

	
LEFTBRACKET

	

	
BACKSLASH

	

	
RIGHTBRACKET

	

	
CARET

	

	
UNDERSCORE

	

	
BACKQUOTE

	

	
A

	

	
B

	

	
C

	

	
D

	

	
E

	

	
F

	

	
G

	

	
H

	

	
I

	

	
J

	

	
K

	

	
L

	

	
M

	

	
N

	

	
O

	

	
P

	

	
Q

	

	
R

	

	
S

	

	
T

	

	
U

	

	
V

	

	
W

	

	
X

	

	
Y

	

	
Z

	

	
DELETE

	

	
KP0

	

	
KP1

	

	
KP2

	

	
KP3

	

	
KP4

	

	
KP5

	

	
KP6

	

	
KP7

	

	
KP8

	

	
KP9

	

	
KP_PERIOD

	

	
KP_DIVIDE

	

	
KP_MULTIPLY

	

	
KP_MINUS

	

	
KP_PLUS

	

	
KP_ENTER

	

	
KP_EQUALS

	

	
UP

	

	
DOWN

	

	
RIGHT

	

	
LEFT

	

	
INSERT

	

	
HOME

	

	
END

	

	
PAGEUP

	

	
PAGEDOWN

	

	
F1

	

	
F2

	

	
F3

	

	
F4

	

	
F5

	

	
F6

	

	
F7

	

	
F8

	

	
F9

	

	
F10

	

	
F11

	

	
F12

	

	
F13

	

	
F14

	

	
F15

	

	
NUMLOCK

	

	
CAPSLOCK

	

	
SCROLLOCK

	

	
RSHIFT

	

	
LSHIFT

	

	
RCTRL

	

	
LCTRL

	

	
RALT

	

	
LALT

	

	
RMETA

	

	
LMETA

	

	
LSUPER

	

	
RSUPER

	

	
MODE

	

	
HELP

	

	
PRINT

	

	
SYSREQ

	

	
BREAK

	

	
MENU

	

	
POWER

	

	
EURO

	

	
LAST

	

Additionally you can access a set of constants that represent modifier keys:

	
class keymods

	Constants representing modifier keys that may have been depressed during
an on_key_up/on_key_down event.

	
LSHIFT

	

	
RSHIFT

	

	
SHIFT

	

	
LCTRL

	

	
RCTRL

	

	
CTRL

	

	
LALT

	

	
RALT

	

	
ALT

	

	
LMETA

	

	
RMETA

	

	
META

	

	
NUM

	

	
CAPS

	

	
MODE

	

 Copyright 2015, Daniel Pope.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pygame Zero 1.1 documentation

Built-in Objects

Pygame Zero provides useful built-in objects to help you make games easily.

Screen

The screen object represents your game screen.

It is a thin wrapper around a Pygame surface that allows you to easily
draw images to the screen (“blit” them).

	
class Screen

	
	
surface

	The raw Pygame surface [https://www.pygame.org/docs/ref/surface.html] that represents the screen buffer. You can
use this for advanced graphics operations.

	
clear()

	Reset the screen to black.

	
fill((red, green, blue))

	Fill the screen with a solid color.

	
blit(image, (left, top))

	Draw the image to the screen at the given position.

blit() accepts either a Surface or a string as its image
parameter. If image is a str then the named image will be
loaded from the images/ directory.

	
draw.line(start, end, (r, g, b))

	Draw a line from start to end.

	
draw.circle(pos, radius, (r, g, b))

	Draw the outline of a circle.

	
draw.filled_circle(pos, radius, (r, g, b))

	Draw a filled circle.

	
draw.rect(rect, (r, g, b))

	Draw the outline of a rectangle.

Takes a Rect.

	
draw.filled_rect(rect, (r, g, b))

	Draw a filled rectangle.

	
draw.text(text, [pos,]**kwargs)

	Draw text.

There’s an extremely rich API for positioning and formatting text; see
Text Formatting for full details.

	
draw.textbox(text, rect, **kwargs)

	Draw text, sized to fill the given Rect.

There’s an extremely rich API for formatting text; see
Text Formatting for full details.

Rect

The Pygame Rect [https://www.pygame.org/docs/ref/rect.html] class is available as a built in. This can be used in a
variety of ways, from detecting clicks within a region to drawing a box onto
the screen:

For example, you can draw a box with:

RED = 200, 0, 0
BOX = Rect((20, 20), (100, 100))

def draw():
 screen.draw.rect(BOX, RED)

Resource Loading

The images and sounds objects can be used to load images and sounds
from files stored in the images and sounds subdirectories respectively.
Pygame Zero will handle loading of these resources on demand and will cache
them to avoid reloading them.

You generally need to ensure that your images are named with lowercase letters,
numbers and underscores only. They also have to start with a letter.

File names like these will work well with the resource loader:

alien.png
alien_hurt.png
alien_run_7.png

These will not work:

3.png
3degrees.png
my-cat.png
sam's dog.png

Images

Pygame Zero can load images in .png, .gif, and .jpg formats. PNG is
recommended: it will allow high quality images with transparency.

We need to ensure an images directory is set up. If your project contains the
following files:

space_game.py
images/alien.png

Then space_game.py could draw the ‘alien’ sprite to the screen with this
code:

def draw():
 screen.clear()
 screen.blit('alien', (10, 10))

The name passed to blit() is the name of the image file within the images
directory, without the file extension.

Or using the Actors API,

alien = Actor('alien')

def draw():
 alien.draw()

There are some restrictions on the file names in both cases: they may only
contain lowercase latin letters, numbers and underscores. This is to prevent
compatibility problems when your game is played on a different operating system
that has different case sensitivity.

Image Surfaces

You can also load images from the images directory using the images
object. This allows you to work with the image data itself, query its
dimensions and so on:

forest = []
for i in range(5):
 forest.append(
 Actor('tree', topleft=(images.tree.width * i, 0))
)

Each loaded image is a Pygame Surface. You will typically use
screen.blit(...) to draw this to the screen. It also provides handy methods
to query the size of the image in pixels:

	
class Surface

	
	
get_width()

	Returns the width of the image in pixels.

	
get_height()

	Returns the height of the image in pixels.

	
get_size()

	Returns a tuple (width, height) indicating the size in pixels of the
surface.

	
get_rect()

	Get a Rect that is pre-populated with the bounds of the image
if the image was located at the origin.

Effectively this is equivalent to:

Rect((0, 0), image.get_size())

Sounds

Pygame Zero can load sounds in .wav and .ogg formats. WAV is great for
small sound effects, while OGG is a compressed format that is more suited to
music. You can find free .ogg and .wav files online that can be used in your
game.

We need to ensure a sounds directory is set up. If your project contains the
following files:

drum_kit.py
sounds/drum.wav

Then drum_kit.py could play the drum sound whenever the mouse is clicked
with this code:

def on_mouse_down():
 sounds.drum_kit.play()

Each loaded sound is a Pygame Sound, and has various methods to play and
stop the sound as well as query its length in seconds:

	
class Sound

	
	
play()

	Play the sound.

	
play(loops)

	Play the sound, but loop it a number of times.

	Parameters:	loops – The number of times to loop. If you pass -1 as the
number of times to loop, the sound will loop forever (or
until you call Sound.stop()

	
stop()

	Stop playing the sound.

	
get_length()

	Get the duration of the sound in seconds.

You should avoid using the sounds object to play longer pieces of music.
Because the sounds sytem will fully load the music into memory before playing
it, this can use a lot of memory, as well as introducing a delay while the
music is loaded.

Music

New in version 1.1.

Warning

The music API is experimental and may be subject to cross-platform
portability issues.

In particular:

	MP3 may not be available on some Linux distributions.

	Some OGG Vorbis files seem to hang Pygame with 100% CPU.

In the case of the latter issue, the problem may be fixed by re-encoding
(possibly with a different encoder).

A built-in object called music provides access to play music from within
a music/ directory (alongside your images/ and sounds/ directories,
if you have them). The music system will load the track a little bit at a time
while the music plays, avoiding the problems with using sounds to play
longer tracks.

Another difference to the sounds system is that only one music track can be
playing at a time. If you play a different track, the previously playing track
will be stopped.

	
music.play(name)

	Play a music track from the given file. The track will loop indefinitely.

This replaces the currently playing track and cancels any tracks previously
queued with queue().

You do not need to include the extension in the track name; for example, to
play the file handel.mp3 on a loop:

music.play('handel')

	
music.play_once(name)

	Similar to play(), but the music will stop after playing through once.

	
music.queue(name)

	Similar to play_once(), but instead of stopping the current music, the
track will be queued to play after the current track finishes (or after
any other previously queued tracks).

	
music.stop()

	Stop the music.

	
music.pause()

	Pause the music temporarily. It can be resumed by calling
unpause().

	
music.unpause()

	Unpause the music.

	
music.is_playing()

	Returns True if the music is playing (and is not paused), False otherwise.

	
music.fadeout(duration)

	Fade out and eventually stop the current music playback.

	Parameters:	duration – The duration in seconds over which the sound will be faded
out. For example, to fade out over half a second, call
music.fadeout(0.5).

	
music.set_volume(volume)

	Set the volume of the music system.

This takes a number between 0 (meaning silent) and 1 (meaning full volume).

	
music.get_volume()

	Get the current volume of the music system.

If you have started a music track playing using music.play_once(), you
can use the on_music_end() hook to do something when the
music ends - for example, to pick another track at random.

Clock

Often when writing a game, you will want to schedule some game event to occur
at a later time. For example, we may want a big boss alien to appear after 60
seconds. Or perhaps a power-up will appear every 20 seconds.

More subtle are the situations when you want to delay some action for a shorter
period. For example you might have a laser weapon that takes 1 second to charge
up.

We can use the clock object to schedule a function to happen in the
future.

Let’s start by defining a function fire_laser that we want to run in the
future:

def fire_laser():
 lasers.append(player.pos)

Then when the fire button is pressed, we will ask the clock to call it for
us after exactly 1 second:

def on_mouse_down():
 clock.schedule(fire_laser, 1.0)

Note that fire_laser is the function itself; without parentheses, it is
not being called here! The clock will call it for us.

(It is a good habit to write out times in seconds with a decimal point, like
1.0. This makes it more obvious when you are reading it back, that you are
referring to a time value and not a count of things.)

clock provides the following useful methods:

	
class Clock

	
	
schedule(callback, delay)

	Schedule callback to be called after the given delay.

Repeated calls will schedule the callback repeatedly.

	Parameters:	
	callback – A callable that takes no arguments.

	delay – The delay, in seconds, before the function should be
called.

	
schedule_unique(callback, delay)

	Schedule callback to be called once after the given delay.

If callback was already scheduled, cancel and reschedule it. This
applies also if it was scheduled multiple times: after calling
schedule_unique, it will be scheduled exactly once.

	Parameters:	
	callback – A callable that takes no arguments.

	delay – The delay, in seconds, before the function should be
called.

	
schedule_interval(callback, interval)

	Schedule callback to be called repeatedly.

	Parameters:	
	callback – A callable that takes no arguments.

	interval – The interval in seconds between calls to callback.

	
unschedule(callback)

	Unschedule callback if it has been previously scheduled (either because
it has been scheduled with schedule() and has not yet been called,
or because it has been scheduled to repeat with
schedule_interval().

Note that the Pygame Zero clock only holds weak references to each callback
you give it. It will not fire scheduled events if the objects and methods are
not referenced elsewhere. This can help prevent the clock keeping objects
alive and continuing to fire unexpectedly after they are otherwise dead.

The downside to the weak references is that you won’t be able to schedule
lambdas or any other object that has been created purely to be scheduled. You
will have to keep a reference to the object.

Actors

Once you have many images moving around in a game it can be convenient to have
something that holds in one place the image and where it is on screen. We’ll
call each moving image on screen an Actor. You can create an actor by supplying
at least an image name (from the images folder above). To draw the alien talked
about above:

alien = Actor('alien', (50, 50))

def draw():
 screen.clear()
 alien.draw()

You can move the actor around by setting its pos attribute in an update:

def update():
 if keyboard.left:
 alien.x -= 1
 elif keyboard.right:
 alien.x += 1

And you may change the image used to draw the actor by setting its image
attribute to some new image name:

alien.image = 'alien_hurt'

Actors have all the same attributes as Rect. If you assign
a new value to one of those attributes then the actor will be moved. For
example:

alien.right = WIDTH

will position the alien so its right-hand side is set to WIDTH.

Similarly, you can also set the initial position of the actor in the
constructor, by passing one of these as a keyword argument: pos,
topleft, topright, bottomleft, bottomright, midtop,
midleft, midright, midbottom or center. For example:

alien = Actor('alien', midbottom=(100, 300))

If you don’t specify an initial position, the actor will initially be
positioned in the top-left corner (equivalent to topleft=(0, 0)).

Actors have an “anchor position”, which is a convenient way to position the
actor in the scene. By default, the anchor position is the center, so the
.pos attribute refers to the center of the actor (and so do the x and
y coordinates). It’s common to want to set the anchor point to another
part of the sprite (perhaps the feet - so that you can easily set the Actor to
be “standing on” something):

alien = Actor('alien', anchor=('center', 'bottom'))
spaceship = Actor('spaceship', anchor=(10, 50))

anchor is specified as a tuple (xanchor, yanchor), where the values can
be floats or the strings left, center/middle, right, top or
bottom as appropriate.

The Keyboard

You probably noticed that we used the keyboard in the above code.
If you’d like to know what keys are pressed on the keyboard, you can query the
attributes of the keyboard builtin. If, say, the left arrow is held down,
then keyboard.left will be True, otherwise it will be False.

There are attributes for every key; some examples:

keyboard.a # The 'A' key
keyboard.left # The left arrow key
keyboard.rshift # The right shift key
keyboard.kp0 # The '0' key on the keypad
keyboard.k_0 # The main '0' key

The full set of key constants is given in the Buttons and Keys
documentation, but the attributes are lowercase, because these are variables
not constants.

Deprecated since version 1.1: Uppercase and prefixed attribute names (eg. keyboard.LEFT or
keyboard.K_a) are now deprecated; use lowercase attribute names
instead.

New in version 1.1: You can now also query the state of the keys using the keyboard constants
themselves:

keyboard[keys.A] # True if the 'A' key is pressed
keyboard[keys.SPACE] # True if the space bar is pressed

Animations

You can animate most things in pygame using the builtin animate(). For
example, to move an Actor from its current position on the
screen to the position (100, 100):

animate(alien, pos=(100, 100))

	
animate(object, tween='linear', duration=1, **targets)

	Animate the attributes on object from their current value to that
specified in the targets keywords.

	Parameters:	
	tween – The type of tweening to use.

	duration – The duration of the animation, in seconds.

	on_complete – Function called when the animation finishes.

	targets – The target values for the attributes to animate.

The tween argument can be one of the following:

	‘linear’
	Animate at a constant speed from start to finish

	‘accelerate’
	Start slower and accelerate to finish

	‘decelerate’
	Start fast and decelerate to finish

	‘accel_decel’
	Accelerate to mid point and decelerate to finish

	‘end_elastic’
	Give a little wobble at the end

	‘start_elastic’
	Have a little wobble at the start

	‘both_elastic’
	Have a wobble at both ends

	‘bounce_end’
	Accelerate to the finish and bounce there

	‘bounce_start’
	Bounce at the start

	‘bounce_start_end’
	Bounce at both ends

The animate() function returns an Animation instance:

	
class Animation

	
	
stop(complete=False)

	Stop the animation, optionally completing the transition to the final
property values.

	Parameters:	complete – Set the animated attribute to the target value.

	
running

	This will be True if the animation is running. It will be False
when the duration has run or the stop() method was called before
then.

	
on_finished

	You may set this attribute to a function which will be called
when the animation duration runs out. The on_finished argument
to animate() also sets this attribute. It is not called when
stop() is called. This function takes no arguments.

 Copyright 2015, Daniel Pope.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pygame Zero 1.1 documentation

Contributing to Pygame Zero

The Pygame Zero project is hosted on bitbucket:

https://bitbucket.org/lordmauve/pgzero

Development installation

It’s possible to create a locally-editable install using pip. From the root directory of the checked out source, run:

pip3 install –editable .

The installed version will now reflect any local changes you make.

Alternatively, if you don’t want to install it at all, it may be run with:

python3 -m pgzero <name of pgzero script>

For example:

python3 -m pgzero examples/demo1.py

Tests

The tests can be run with

python3 setup.py test

 Copyright 2015, Daniel Pope.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Pygame Zero 1.1 documentation

Changelog

1.1 - pending

	Added a spell checker that will point out hook or parameter names that have
been misspelled when the program starts.

	New ZRect built-in class, API compatible with Rect, but which accepts
coordinates with floating point precision.

	Refactor of built-in keyboard object to fix attribute case consistency.
This also allows querying key state by keys constants, eg.
keyboard[keys.LEFT].

	Provide much better information when sound files are in an unsupported
format.

	screen.blit() now accepts an image name string as well as a Surface
object, for consistency with Actor.

	Fixed a bug with non-focusable windows and other event bugs when running in
a virtualenv on Mac OS X.

	Actor can now be positioned by any of its border points (eg. topleft,
midright) directly in the constructor.

	Added additional example games in the examples/ directory.

1.0.2 - 2015-06-04

	Fix: ensure compatibility with Python 3.2

1.0.1 - 2015-05-31

This is a bugfix release.

	Fix: Actor is now positioned to the top left of the window if pos is
unspecified, rather than appearing partially off-screen.

	Fix: repeating clock events can now unschedule/reschedule themselves

Previously a callback that tried to unschedule itself would have had no
effect, because after the callback returns it was rescheduled by the clock.

This applies also to schedule_unique.

	Fix: runner now correctly displays tracebacks from user code

	New: Eliminate redraws when nothing has changed

Redraws will now happen only if:

	The screen has not yet been drawn

	You have defined an update() function

	An input event has been fired

	The clock has dispatched an event

1.0 - 2015-05-29

	New: Added anchor parameter to Actor, offering control over where its
pos attribute refers to. By default it now refers to the center.

	New: Added Ctrl-Q/⌘-Q as a hard-coded keyboard shortcut to exit a game.

	New: on_mouse_* and on_key_* receive IntEnum values as button
and key parameters, respectively. This simplifies debugging and enables
usage like:

if button is button.LEFT:

1.0beta1 - 2015-05-19

Initial public (preview) release.

 Copyright 2015, Daniel Pope.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Pygame Zero 1.1 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	

 	A (keys attribute)

 	ALT (keymods attribute)

 	AMPERSAND (keys attribute)

 	animate() (built-in function)

 	

 	Animation (built-in class)

 	ASTERISK (keys attribute)

 	AT (keys attribute)

B

 	

 	B (keys attribute)

 	BACKQUOTE (keys attribute)

 	BACKSLASH (keys attribute)

 	

 	BACKSPACE (keys attribute)

 	blit() (Screen method)

 	BREAK (keys attribute)

C

 	

 	C (keys attribute)

 	CAPS (keymods attribute)

 	CAPSLOCK (keys attribute)

 	CARET (keys attribute)

 	circle() (Screen.draw method)

 	CLEAR (keys attribute)

 	

 	clear() (Screen method)

 	Clock (built-in class)

 	COLON (keys attribute)

 	COMMA (keys attribute)

 	CTRL (keymods attribute)

D

 	

 	D (keys attribute)

 	DELETE (keys attribute)

 	DOLLAR (keys attribute)

 	

 	DOWN (keys attribute)

 	draw() (built-in function)

E

 	

 	E (keys attribute)

 	END (keys attribute)

 	EQUALS (keys attribute)

 	

 	ESCAPE (keys attribute)

 	EURO (keys attribute)

 	EXCLAIM (keys attribute)

F

 	

 	F (keys attribute)

 	F1 (keys attribute)

 	F10 (keys attribute)

 	F11 (keys attribute)

 	F12 (keys attribute)

 	F13 (keys attribute)

 	F14 (keys attribute)

 	F15 (keys attribute)

 	F2 (keys attribute)

 	F3 (keys attribute)

 	

 	F4 (keys attribute)

 	F5 (keys attribute)

 	F6 (keys attribute)

 	F7 (keys attribute)

 	F8 (keys attribute)

 	F9 (keys attribute)

 	fill() (Screen method)

 	filled_circle() (Screen.draw method)

 	filled_rect() (Screen.draw method)

G

 	

 	G (keys attribute)

 	get_height() (Surface method)

 	get_length() (Sound method)

 	get_rect() (Surface method)

 	

 	get_size() (Surface method)

 	get_width() (Surface method)

 	GREATER (keys attribute)

H

 	

 	H (keys attribute)

 	HASH (keys attribute)

 	

 	HELP (keys attribute)

 	HOME (keys attribute)

I

 	

 	I (keys attribute)

 	

 	INSERT (keys attribute)

J

 	

 	J (keys attribute)

K

 	

 	K (keys attribute)

 	K_0 (keys attribute)

 	K_1 (keys attribute)

 	K_2 (keys attribute)

 	K_3 (keys attribute)

 	K_4 (keys attribute)

 	K_5 (keys attribute)

 	K_6 (keys attribute)

 	K_7 (keys attribute)

 	K_8 (keys attribute)

 	K_9 (keys attribute)

 	keymods (built-in class)

 	keys (built-in class)

 	KP0 (keys attribute)

 	KP1 (keys attribute)

 	

 	KP2 (keys attribute)

 	KP3 (keys attribute)

 	KP4 (keys attribute)

 	KP5 (keys attribute)

 	KP6 (keys attribute)

 	KP7 (keys attribute)

 	KP8 (keys attribute)

 	KP9 (keys attribute)

 	KP_DIVIDE (keys attribute)

 	KP_ENTER (keys attribute)

 	KP_EQUALS (keys attribute)

 	KP_MINUS (keys attribute)

 	KP_MULTIPLY (keys attribute)

 	KP_PERIOD (keys attribute)

 	KP_PLUS (keys attribute)

L

 	

 	L (keys attribute)

 	LALT (keymods attribute)

 	

 	(keys attribute)

 	LAST (keys attribute)

 	LCTRL (keymods attribute)

 	

 	(keys attribute)

 	LEFT (keys attribute)

 	

 	(mouse attribute)

 	LEFTBRACKET (keys attribute)

 	

 	LEFTPAREN (keys attribute)

 	LESS (keys attribute)

 	line() (Screen.draw method)

 	LMETA (keymods attribute)

 	

 	(keys attribute)

 	LSHIFT (keymods attribute)

 	

 	(keys attribute)

 	LSUPER (keys attribute)

M

 	

 	M (keys attribute)

 	MENU (keys attribute)

 	META (keymods attribute)

 	MIDDLE (mouse attribute)

 	MINUS (keys attribute)

 	MODE (keymods attribute)

 	

 	(keys attribute)

 	mouse (built-in class)

 	music.fadeout() (built-in function)

 	music.get_volume() (built-in function)

 	

 	music.is_playing() (built-in function)

 	music.pause() (built-in function)

 	music.play() (built-in function)

 	music.play_once() (built-in function)

 	music.queue() (built-in function)

 	music.set_volume() (built-in function)

 	music.stop() (built-in function)

 	music.unpause() (built-in function)

N

 	

 	N (keys attribute)

 	NUM (keymods attribute)

 	

 	NUMLOCK (keys attribute)

O

 	

 	O (keys attribute)

 	on_finished (Animation attribute)

 	on_key_down() (built-in function)

 	on_key_up() (built-in function)

 	

 	on_mouse_down() (built-in function)

 	on_mouse_move() (built-in function)

 	on_mouse_up() (built-in function)

 	on_music_end() (built-in function)

P

 	

 	P (keys attribute)

 	PAGEDOWN (keys attribute)

 	PAGEUP (keys attribute)

 	PAUSE (keys attribute)

 	PERIOD (keys attribute)

 	

 	play() (Sound method), [1]

 	PLUS (keys attribute)

 	POWER (keys attribute)

 	PRINT (keys attribute)

Q

 	

 	Q (keys attribute)

 	QUESTION (keys attribute)

 	

 	QUOTE (keys attribute)

 	QUOTEDBL (keys attribute)

R

 	

 	R (keys attribute)

 	RALT (keymods attribute)

 	

 	(keys attribute)

 	RCTRL (keymods attribute)

 	

 	(keys attribute)

 	rect() (Screen.draw method)

 	RETURN (keys attribute)

 	RIGHT (keys attribute)

 	

 	(mouse attribute)

 	

 	RIGHTBRACKET (keys attribute)

 	RIGHTPAREN (keys attribute)

 	RMETA (keymods attribute)

 	

 	(keys attribute)

 	RSHIFT (keymods attribute)

 	

 	(keys attribute)

 	RSUPER (keys attribute)

 	running (Animation attribute)

S

 	

 	S (keys attribute)

 	schedule() (Clock method)

 	schedule_interval() (Clock method)

 	schedule_unique() (Clock method)

 	Screen (built-in class)

 	SCROLLOCK (keys attribute)

 	SEMICOLON (keys attribute)

 	SHIFT (keymods attribute)

 	

 	SLASH (keys attribute)

 	Sound (built-in class)

 	SPACE (keys attribute)

 	stop() (Animation method)

 	

 	(Sound method)

 	Surface (built-in class)

 	surface (Screen attribute)

 	SYSREQ (keys attribute)

T

 	

 	T (keys attribute)

 	TAB (keys attribute)

 	

 	text() (Screen.draw method)

 	textbox() (Screen.draw method)

U

 	

 	U (keys attribute)

 	UNDERSCORE (keys attribute)

 	unschedule() (Clock method)

 	

 	UP (keys attribute)

 	update() (built-in function)

V

 	

 	V (keys attribute)

W

 	

 	W (keys attribute)

 	WHEEL_DOWN (mouse attribute)

 	

 	WHEEL_UP (mouse attribute)

X

 	

 	X (keys attribute)

Y

 	

 	Y (keys attribute)

Z

 	

 	Z (keys attribute)

 Copyright 2015, Daniel Pope.
 Created using Sphinx 1.3.1.

 _images/alien.png

ptext.html

 Navigation

 		
 index

 		Pygame Zero 1.1 documentation »

Text Formatting

The Screen‘s draw.text() method has a very rich set of methods for
position and formatting of text. Some examples:

screen.draw.text("Text color", (50, 30), color="orange")
screen.draw.text("Font name and size", (20, 100), fontname="Boogaloo", fontsize=60)
screen.draw.text("Positioned text", topright=(840, 20))
screen.draw.text("Allow me to demonstrate wrapped text.", (90, 210), width=180, lineheight=1.5)
screen.draw.text("Outlined text", (400, 70), owidth=1.5, ocolor=(255,255,0), color=(0,0,0))
screen.draw.text("Drop shadow", (640, 110), shadow=(2,2), scolor="#202020")
screen.draw.text("Color gradient", (540, 170), color="red", gcolor="purple")
screen.draw.text("Transparency", (700, 240), alpha=0.1)
screen.draw.text("Vertical text", midleft=(40, 440), angle=90)
screen.draw.text("All together now:\nCombining the above options",
 midbottom=(427,460), width=360, fontname="Boogaloo", fontsize=48,
 color="#AAFF00", gcolor="#66AA00", owidth=1.5, ocolor="black", alpha=0.8)

In its simplest usage, screen.draw.text requires the string you want to
draw, and the position. You can either do this by passing coordinates as the
second argument (which is the top left of where the text will appear), or use
the positioning keyword arguments (described later):

screen.draw.text("hello world", (20, 100))

screen.draw.text takes many optional keyword arguments, described below.

Font name and size

Fonts are loaded from a directory named fonts, in a similar way to the
handling of images and sounds. Fonts must be in .ttf format. For example:

screen.draw.text("hello world", (100, 100), fontname="Viga", fontsize=32)

Keyword arguments:

		fontname: filename of the font to draw. By default, use the system font.

		fontsize: size of the font to use, in pixels. Defaults to 24.

		antialias: whether to render with antialiasing. Defaults to True.

Color and background color

screen.draw.text("hello world", (100, 100), color=(200, 200, 200), background="gray")

Keyword arguments:

		color: foreground color to use. Defaults to white.

		background: background color to use. Defaults to None.

color (as well as background, ocolor, scolor, and
gcolor) can be an (r, g, b) sequence such as (255,127,0), a
pygame.Color object, a color name such as "orange", an HTML hex
color string such as "#FF7F00", or a string representing a hex color
number such as "0xFF7F00".

background can also be None, in which case the background is
transparent. Unlike pygame.font.Font.render, it’s generally not more
efficient to set a background color when calling screen.draw.text. So only
specify a background color if you actually want one.

Colors with alpha transparency are not supported (except for the special
case of invisible text with outlines or drop shadows - see below). See
the alpha keyword argument for transparency.

Positioning

screen.draw.text("hello world", centery=50, right=300)
screen.draw.text("hello world", midtop=(400, 0))

Keyword arguments:

top left bottom right
topleft bottomleft topright bottomright
midtop midleft midbottom midright
center centerx centery

Positioning keyword arguments behave like the corresponding properties
of pygame.Rect. Either specify two arguments, corresponding to the
horizontal and vertical positions of the box, or a single argument that
specifies both.

If the position is overspecified (e.g. both left and right are
given), then extra specifications will be (arbitrarily but
deterministically) discarded. For constrained text, see the section on
screen.draw.textbox below.

Word wrap

screen.draw.text("splitting\nlines", (100, 100))
screen.draw.text("splitting lines", (100, 100), width=60)

Keyword arguments:

		width: maximum width of the text to draw, in pixels. Defaults to
None.

		widthem: maximum width of the text to draw, in font-based em
units. Defaults to None.

		lineheight: vertical spacing between lines, in units of the
font’s default line height. Defaults to 1.0.

screen.draw.text will always wrap lines at newline (\n) characters. If
width or widthem is set, it will also try to wrap lines in order
to keep each line shorter than the given width. The text is not
guaranteed to be within the given width, because wrapping only occurs at
space characters, so if a single word is too long to fit on a line, it
will not be broken up. Outline and drop shadow are also not accounted
for, so they may extend beyond the given width.

You can prevent wrapping on a particular space with non-breaking space
characters (\u00A0).

Text alignment

screen.draw.text("hello\nworld", bottomright=(500, 400), align="left")

Keyword argument:

		align: horizontal positioning of lines with respect to each
other. Defaults to None.

align determines how lines are positioned horizontally with respect
to each other, when more than one line is drawn. Valid values for
align are the strings "left", "center", or "right", a
numerical value between 0.0 (for left alignment) and 1.0 (for
right alignment), or None.

If align is None, the alignment is determined based on other arguments,
in a way that should be what you want most of the time. It depends on any
positioning arguments (topleft, centerx, etc.), anchor, and finally
defaults to "left". I suggest you generally trust the default alignment,
and only specify align if something doesn’t look right.

Outline

screen.draw.text("hello world", (100, 100), owidth=1, ocolor="blue")

Keyword arguments:

		owidth: outline thickness, in outline units. Defaults to
None.

		ocolor: outline color. Defaults to "black".

The text will be outlined if owidth is specified. The outlining is a
crude manual method, and will probably look bad at large sizes. The
units of owidth are chosen so that 1.0 is a good typical value
for outlines. Specifically, they’re the font size divided by 24.

As a special case, setting color to a transparent value (e.g.
(0,0,0,0)) while using outilnes will cause the text to be invisible,
giving a hollow outline. (This feature is not compatible with
gcolor.)

Valid values for ocolor are the same as for color.

Drop shadow

screen.draw.text("hello world", (100, 100), shadow=(1.0,1.0), scolor="blue")

Keyword arguments:

		shadow: (x,y) values representing the drop shadow offset, in
shadow units. Defaults to None.

		scolor: drop shadow color. Defaults to "black".

The text will have a drop shadow if shadow is specified. It must be
set to a 2-element sequence representing the x and y offsets of the drop
shadow, which can be positive, negative, or 0. For example,
shadow=(1.0,1.0) corresponds to a shadow down and to the right of
the text. shadow=(0,-1.2) corresponds to a shadow higher than the
text.

The units of shadow are chosen so that 1.0 is a good typical
value for the offset. Specifically, they’re the font size divided by 18.

As a special case, setting color to a transparent value (e.g.
(0,0,0,0)) while using drop shadow will cause the text to be
invisible, giving a hollow shadow. (This feature is not compatible with
gcolor.)

Valid values for scolor are the same as for color.

Gradient color

screen.draw.text("hello world", (100, 100), color="black", gcolor="green")

Keyword argument:

		gcolor: Lower gradient stop color. Defaults to None.

Specify gcolor to color the text with a vertical color gradient. The
text’s color will be color at the top and gcolor at the bottom.
Positioning of the gradient stops and orientation of the gradient are
hard coded and cannot be specified.

Requries pygame.surfarray module, which uses numpy or Numeric
library.

Alpha transparency

screen.draw.text("hello world", (100, 100), alpha=0.5)

Keyword argument:

		alpha: alpha transparency value, between 0 and 1. Defaults to
1.0.

In order to maximize reuse of cached transparent surfaces, the value of
alpha is rounded.

Requires pygame.surfarray module, which uses numpy or Numeric
library.

Anchored positioning

screen.draw.text("hello world", (100, 100), anchor=(0.3,0.7))

Keyword argument:

		anchor: a length-2 sequence of horizontal and vertical anchor
fractions. Defaults to (0.0, 0.0).

anchor specifies how the text is anchored to the given position,
when no positioning keyword arguments are passed. The two values in
anchor can take arbitrary values between 0.0 and 1.0. An
anchor value of (0,0), the default, means that the given
position is the top left of the text. A value of (1,1) means the
given position is the bottom right of the text.

Rotation

screen.draw.text("hello world", (100, 100), angle=10)

Keyword argument:

		angle: counterclockwise rotation angle in degrees. Defaults to
0.

Positioning of rotated surfaces is tricky. When drawing rotated text, the
anchor point, the position you actually specify, remains fixed, and the text
rotates around it. For instance, if you specify the top left of the text to be
at (100, 100) with an angle of 90, then the Surface will actually be
drawn so that its bottom left is at (100, 100).

If you find that confusing, try specifying the center. If you anchor the
text at the center, then the center will remain fixed, no matter how you
rotate it.

In order to maximize reuse of cached rotated surfaces, the value of
angle is rounded to the nearest multiple of 3 degrees.

Constrained text

screen.draw.textbox("hello world", (100, 100, 200, 50))

screen.draw.textbox requires two arguments: the text to be drawn, and a
pygame.Rect or a Rect-like object to stay within. The font size
will be chosen to be as large as possible while staying within the box.
Other than fontsize and positional arguments, you can pass all the
same keyword arguments to screen.draw.textbox as to screen.draw.text.

 © Copyright 2015, Daniel Pope.
 Created using Sphinx 1.3.1.

_static/comment.png

_static/up.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-bright.png

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

_static/alien.png

learn-programming.html

 Navigation

 		
 index

 		Pygame Zero 1.1 documentation »

Learn programming with Pygame Zero

Let’s start at the beginning. This tutorial is for those with no programming
experience whatsoever. We’re going to learn to make a simple but perhaps fun
game.

I’m going to assume Pygame Zero is installed already and you know how to use
a text editor.

Creating a blank file

First, create an empty file called “fishfrenzy.py” by creating a new, empty
file in your editor and saving it as “fishfrenzy.py” in a new directory.

Verify that this runs and creates a blank window by running

cd the_directory_you_created
pgzrun fishfrenzy.py

How you run this may depend on your editor, shell, or loads of other things.

If this step failed, then you may be in the wrong directory, or Python or
Pygame Zero may not be installed correctly - or hundreds of other things. In
many ways this is the hardest step, because it’s beyond the scope of this
tutorial to explain things, given how many different configurations there are:
what operating system you are running, what version of Python, what version of
Pygame Zero.

But with any luck you can get it to work! If you see a blank “Pygame Zero Game”
window, we’re good to move on.

Really stuck?

You can get into a support chat room by going to

http://webchat.freenode.net?randomnick=1&channels=%23%23learnpython&uio=d4

Functions

Let’s begin for real.

In most programming languages we program by defining a series of steps that the
computer will carry out for us, like a recipe. In bakery, you might have
a recipe like:

Cake Recipe

		Add flour to the bowl

		Add sugar to the bowl

		Add butter to the bowl

		Add an egg to the bowl

		Whisk the ingredients

		Pour into a cake tin

		Bake it

... and so on. (Don’t try this recipe. I am not a chef.)

A game among programmers is to imagine how this would look as a program in an
imaginary computer that understood whatever instructions you could name (this
is called pseudocode - because it looks like code, but it doesn’t actually
work). If we translated this recipe into Python, it would look like this:

def cake_recipe():
 bowl.add(flour)
 bowl.add(sugar)
 bowl.add(butter)
 bowl.add(egg)
 whisk(bowl)
 cake_tin.add(bowl.get_contents())
 bake(cake_tin)

That’s pretty similar, isn’t it? We’ve had to spell the names of some of the
words differently, but basically, each line of the program is equivalent to one
line of the recipe - one “action”.

The top line with def is defining a recipe called cake_recipe, and all
of the other lines are steps in the recipe. And in fact - because they all use
parentheses - they refer to other recipes that the computer might know.

So, let’s write a real recipe in Pygame Zero. In your editor, let’s write a
draw recipe. Pygame Zero knows how to call a function called draw:

def draw():
 screen.clear()
 screen.draw.circle((400, 300), 30, (255, 255, 255))

Run it with:

pgzrun fishfrenzy.py

Did it work? Do you see the circle? On my screen it looks like this:

[image: _images/circle.png]
If Pygame Zero didn’t show a window, or showed a window that disappeared
straight away, look at the error message it displayed:

		SyntaxError - Probably means you are missing a parenthesis or your
indentation doesn’t match mine. Note how each step of the function has to be
aligned with each other, but indented more than the def at the top.

		AttributeError or NameError - You probably mispelled something.

		TypeError - did you put some of the parentheses in the wrong places?

If the window appears, but nothing happens, did you misspell “draw”? Or any of
the numbers?

Check carefully if it doesn’t work first time and you should be able to get it
to work after a few attempts.

So we created a recipe that includes two steps:

		Clear the screen to black

		Draw a circle on the screen:

		At the middle (400, 300). These are coordinates for the center of the
circle, in pixels from the left then pixels from the top.

		Of radius 30 pixels.

		And draw it in white, which is written as three numbers, red, green and
blue: (255, 255, 255). White is an equal mix of red, green and blue,
and 255 is the most you can have.

You can play with all of these numbers.

Diversion: Local and Global Variables

Suppose we wrote the following code:

RED = 150, 0, 0
GREEN = 0, 128, 0

bg = RED

def draw():
 screen.fill(bg)

def on_mouse_down():
 bg = GREEN

def on_mouse_up():
 bg = RED

In some languages, this would work: the screen would change to green
when the mouse button was pressed, and change back to red when the button is
released.

This code doesn’t work in Python. If you try it, you will not see the screen
change to green. Why?

When you assign with the = operator inside a function, as at line 10 (and
line 13), you create a “local” variable called bg that exists only with the
function. The bg we want to change is in the global scope. It’s actually
a very sensible feature; you don’t want to

The fix is to declare in on_mouse_down() and on_mouse_up() that we
want to modify the global variable, not create a new local variable. We do
this with the global statement. The correct code in Pygame Zero is:

RED = 150, 0, 0
GREEN = 0, 128, 0

bg = RED

def draw():
 screen.fill(bg)

def on_mouse_down():
 global bg
 bg = GREEN

def on_mouse_up():
 global bg
 bg = RED

 © Copyright 2015, Daniel Pope.
 Created using Sphinx 1.3.1.

_static/alien_hurt.png

search.html

 Navigation

 		
 index

 		Pygame Zero 1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Daniel Pope.
 Created using Sphinx 1.3.1.

_static/minus.png

_static/down.png

_static/grabs/circle.png

_static/file.png

_images/circle.png

